You are browsing a read-only backup copy of Wikitech. The primary site can be found at

User:AndreaWest/Blazegraph Features and Capabilities

From Wikitech-static
< User:AndreaWest
Revision as of 00:25, 26 April 2022 by imported>AndreaWest (→‎wikibase:around and wikibase:box)
Jump to navigation Jump to search

The following is a list of Blazegraph-specific features and capabilities used by WDQS and its community. Defining alternative implementations that minimize the user impact is of critical importance.

Overview of Blazegraph-Specific Features and Capabilities

  • SPARQL functionality extensions
    • Typically, SPARQL is extended by new datatypes and functions
      • The current Blazegraph implementation has a mix of function extensions (geof:distance, geof:globe, geof:latitude, geof:longitude and wikibase:decodeUri) and SERVICE extensions (such as wikibase:label, wikibase:around or wikibase:mwapi)
      • Whereas functions return a single value, the WDQS SERVICES provide multiple outputs
      • Each of the current datatypes/functions and SERVICES are discussed below
  • Named subqueries
    • Documentation
    • Note that although support for subqueries is required for SPARQL compliance, naming is not a compliant feature
    • It is likely that subqueries will not be name-able
    • Based on the placement of the subquery in the overall SPARQL and the use of query hints, a subquery's order of execution can be controlled

SPARQL Functional Extensions

The current Blazegraph functional extensions require the creation of custom SPARQL functions (which are supported by all the Blazegraph alternative backends):

  • The functions, geof:globe, geof:latitude and geof:longitude, are simple decompositions of the geometry data of a POINT
    • In both Wikidata and GeoSPARQL, a geometric POINT utilizes a WKT (well-known text) representation, and is specified by a coordinate system,followed by a longitude/latitude
    • The coordinate system (also known as the spatial reference system) is defined either by WGS84 on Earth or identified by an item ID (within right and left carets, '<' and '>') which specifies a non-Earth/planetary body
    • The geof:globe function retrieves the coordinate system; If a coordinate system is not specified, then the default is <> (Earth)
    • geof:latitude and geof:longitude split the POINT data with longitude specified first and latitude second
    • The wikibase:geoGlobe, wikibase:geoLatitude and wikibase:geoLongitude value properties correspond to the geof:globe, geof:latitude and geof:longitude functions
      • The properties and functions can be used to construct/destruct a geospatial POINT
      • For example, a POINT location can be defined from the value properties using the following graph pattern: BIND (STRDT(CONCAT("POINT(<", wikibase:geoGlobe, "> ", wikibase:geoLongitude, " ", wikibase:geoLatitude, ")"), <>) as ?location)
  • The function, wikibase:decodeURI, will be defined using the logic at

Geospatial Support Using GeoSPARQL

The last Blazegraph property extension is geof:distance. That is supported directly by GeoSPARQL, and is also identified as geof:distance. Blazegraph's geof:distance takes as input two POINTs and returns the distance between them in kilometers. The GeoSPARQL function, geof:distance, also supports the input of two POINTs and adds a third parameter, units (which could be defaulted in the code base to kilometers). Note that GeoSPARQL 1.0 has only a few basic units of measure defined. But, the proposed GeoSPARQL 1.1 specification indicates the use of the Quantities, Units, Dimensions and Types ontology (QUDT) which is much broader.

Beyond the distance function, there are other valuable GeoSPARQL features and functions which could be used in Wikidata queries. These include:

  • Specification of geometries/locations beyond POINTs, such as POLYGONs (which are specified as a group of POINTs that define the geometry's boundary)
  • geof:buffer function, which conceptualizes the space around a geometry (such as a POINT), where the space is defined by a radius given by some units
  • geof:envelope function, which returns the minimal bounding box for an input geometry
    • Given a complex POLYGON, the function would return another POLYGON defining the 4 corners of the minimal bounding box
  • Specification of topology relation functions which compare two geometries and return a boolean indicating if they meet the criteria of the function:
    • geof:sfEquals, returns true if the 2 geometries are equal
    • geof:sfDisjoint, returns true if the 2 geometries are disjoint/separate (inverse of geof:sfEquals)
    • geof:sfIntersects, returns true if any part of the first geometry overlaps with any part of the second
    • geof:sfTouches, returns true if a boundary of the first geometry comes into contact with the boundary of the second (but the interiors of the geometries do NOT intersect)
    • geof:sfCrosses, returns true if the interior of the first geometry comes into contact with the interior or boundary of the second
    • geof:sfWithin, returns true if the second geometry completely encloses the first
    • geof:sfContains, returns true if the first geometry completely encloses the second

Note that some of the above will be used to address the Blazegraph geospatial SERVICEs (wikibase:around and wikibase:box), as explained below.

SERVICE Extensions

This section describes how the Blazegraph-specific SERVICEs (wikibase:label, wikibase:mmwap, wikibase:around, wikibase:box, gas:service, bd:sample and bd:slice) will be supported moving forward.

Problem: It is possible to implement similar SERVICE functionality at an addressable IRI (and still use federation), but the issue is providing the necessary context/query results for manipulation (for example, what items need retrieval of their labels/alt labels/descriptions). Or, if not implemented as an independent process (at an addressable IRI) but as a functional extension, the issue is how to return multiple results.

wikibase:around and wikibase:box

It is reasonable to replace the around and box SERVICEs with graph patterns that utilize the GeoSPARQL topology relation functions discussed above. This approach might be most easily explained by using examples.

Let us first examine a query using the wikibase:around SERVICE, which finds airports within 100km of Berlin:

SELECT ?place ?location ?dist WHERE {
  wd:Q64 wdt:P625 ?berlinLoc .       # Berlin coordinates
  SERVICE wikibase:around { 
      ?place wdt:P625 ?location . 
      bd:serviceParam wikibase:center ?berlinLoc . 
      bd:serviceParam wikibase:radius "100" . 
      bd:serviceParam wikibase:distance ?dist.
  FILTER EXISTS { ?place wdt:P31/wdt:P279* wd:Q1248784 }    # Is an airport
} ORDER BY ASC(?dist)

This could be written as:

SELECT ?place ?location ?dist WHERE {
  wd:Q64 wdt:P625 ?berlinLoc .             # Berlin location
  ?place wdt:P31/wdt:P279* wd:Q1248784 ;   # Get airports
         wdt:P625 ?location .              # And their coordinates
  BIND (geof:distance(?berlinLoc, ?location, uom:metre) as ?dist) .
  FILTER (?dist <= 100000)
} ORDER BY ASC(?dist)

Alternately, the check could be accomplished by the following query:

SELECT ?place ?location ?dist WHERE {
     SELECT ?berlinLoc ?aroundBerlinLoc WHERE {
        wd:Q64 wdt:P625 ?berlinLoc .       # Berlin location
        BIND (geof:buffer(?berlinLoc, 100000, uom:metre) as ?aroundBerlinLoc) }   # Geometry surrounding Berlin
  ?place wdt:P31/wdt:P279* wd:Q1248784 ;   # Get airports
         wdt:P625 ?location .              # And their coordinates
  # Filter if the airport location is within the specified geometry
  FILTER (geof:sfWithin(?location, ?aroundBerlinLoc)) .
  BIND (geof:distance(?berlinLoc, ?location, uom:metre) as ?dist) .    # Get the actual distance after filtering
} ORDER BY ASC(?dist)

In order to support the wikibase:box functionality, a similar approach is taken - although geof:buffer is replaced by a custom geof:box function. For example, this query using wikibase:box finds all schools between San Jose and San Francisco CA:

SELECT ?place ?location WHERE {
  wd:Q62 wdt:P625 ?point1 .     # San Francisco location
  wd:Q16553 wdt:P625 ?point2 .  # San Jose location
  SERVICE wikibase:box {
    ?place wdt:P625 ?location .
    bd:serviceParam wikibase:cornerWest ?point1 .
    bd:serviceParam wikibase:cornerEast ?point2 .
  FILTER EXISTS { ?place wdt:P31/wdt:P279* wd:Q3914 }   # Get schools

It becomes:

SELECT ?place ?location WHERE {
     SELECT ?boundingBox WHERE {
        wd:Q62 wdt:P625 ?westPoint .        # San Francisco location
        wd:Q16553 wdt:P625 ?eastPoint .     # San Jose location
        BIND (geof:box(?westPoint, ?eastPoint) as ?boundingBox) }  
  ?place wdt:P31/wdt:P279* wd:Q3914 ;   # Get schools
         wdt:P625 ?location .           # And their coordinates
  # Filter if the school location is within the specified bounding box
  FILTER (geof:sfWithin(?location, ?boundingBox))   

Note that the above proposes a new function (geof:box) that constructs a bounding polygon based on two POINT locations - where the first parameter is the western-most point and the second parameter is the eastern-most point. The latter is simply a decomposition of the two POINTs into their latitudes and longitudes, and then the creation of a POLYGON using the SPARQL STRDT function. The function could be provided for convenience. If not provided, the functionality is easily implemented using the following graph patterns:

BIND (geof:latitude(?westPoint) as ?westLat) .
BIND (geof:longitude(?westPoint) as ?westLong).
BIND (geof:latitude(?eastPoint) as ?eastLat) .
BIND (geof:longitude(?eastPoint) as ?eastLong) .
# Note that a POLYGON must be closed (e.g., begin and end at the same POINT)
BIND (STRDT(CONCAT("POLYGON(", STR(?westLong), " ", STR(?westLat), ", ", STR(?eastLong), " ", STR(?westLat), ", ",
                   STR(?eastLong), " ", STR(?eastLat), ", ", STR(?westLong), " ", STR(?eastLat), ", ",
                   STR(?westLong), " ", STR(?westLat), ")"),     
      <>) as ?boundingBox) .





GAS Service (Gather Apply Scatter)

bd:sample and bd:slice